Solution 9

16.4 no 28. Solution. Call the arch of the cycloid running from $t=0$ to $2 \pi C_{1}$. It is an arch lying in the first quadrant running in clockwise direction. Together with the line segment C_{2} from $(2 \pi, 0)$ to $(0,0)$, it forms a simple closed curve running in clockwise direction. We have

$$
\int_{C_{1}} x d y-y d x=\int_{0}^{2 \pi}[(t-\sin t)(\sin t)-(1-\cos t)(\cos t)] d t=\cdots=-6 \pi
$$

On the other hand, $-C_{2}$ is parametrized by $c_{2}(x)=x \mathbf{i}+0 \mathbf{j}, x \in[0,2 \pi]$. We have $y d x-x d y=$ $0 d x-x 0 d x=0$ along it, hence

$$
\int_{C_{2}} x d y-y d x=0
$$

According to the area formula

$$
\text { Area }=\frac{1}{2}\left(\int_{-C_{1}}+\int_{-C_{2}}\right)(x d y-y d x)
$$

the area is given by 3π.
no 35. Solution. Take $M=0$ and $N=x^{2} / 2$ in Green's theorem to get

$$
\oint_{C} x^{2} / 2 d y=\iint_{R} x d A
$$

hence

$$
\bar{x} \equiv \frac{1}{A} \iint_{R} x d A=\frac{1}{2 A} \oint_{C} x d y
$$

no 37. Solution. By Green's theorem,

$$
\oint_{C}\left(f_{y} d x-f_{x} d y\right)=\iint_{R}\left(-f_{x x}-f_{y y}\right) d A=0
$$

since f satisfies the Laplace's equation.

Supplementary Problems

1. Let D be the parallelogram formed by the lines $x+y=1, x+y=3, y=2 x-3, y=2 x+2$. Evaluate the line integral

$$
\oint_{C} d x+3 x y d y
$$

where C is the boundary of D oriented in anticlockwise direction. Suggestion: Try Green's theorem and then apply change of variables formula.
Solution. By Green's theorem

$$
\oint_{C} d x+3 x y d y=\iint_{D} 3 y d A(x, y)
$$

Next we apply the change of variables formula to evaluate this integral. Let $u=x+y$ and $v=y-2 x$. Then $(u, v) \mapsto(x, y)$ sends the rectangle $R=[1,3] \times[-3,2]$ to D. We have
$\frac{\partial(u, v)}{\partial(x, y)}=3$ and $x=(u-v) / 3$ and $y=(2 u+v) / 3$. By the change of variables formula

$$
\begin{aligned}
\iint_{D} 3 y d A(x, y) & =\iint_{R}(2 u+v) \frac{1}{3} d A(u, v) \\
& =\frac{1}{3} \int_{1}^{3} \int_{-3}^{2}(2 u+v) d v d u \\
& =\frac{1}{3} \int_{1}^{3}(10 u-5) d u \\
& =\frac{35}{3}
\end{aligned}
$$

2. Find a potential for the vector field

$$
\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}
$$

in the region obtained by deleting the line $(x, 0), x \leq 0$, from \mathbb{R}^{2}.
Solution. From $\frac{\partial \Phi}{\partial y}=\frac{x}{x^{2}+y^{2}}$, etc we get

$$
\Phi(x, y)=\tan ^{-1} \frac{y}{x}
$$

This is the argument, that is, the angle between (x, y) and the positive x-axis.
If you start with $\frac{\partial \Phi}{\partial x}=\frac{-y}{x^{2}+y^{2}}$, you get

$$
\Phi(x, y)=-\tan ^{-1} \frac{x}{y}
$$

which is the same as the first one after observing the relation $\tan (\pi / 2-\theta)=-1 / \tan \theta$.
3. Let $F=M \mathbf{i}+N \mathbf{j}$ be a smooth vector field in \mathbb{R}^{2} except at the origin. Suppose that $M_{y}=N_{x}$. Show that for any simple closed curve γ enclosing the origin and oriented in anticlockwise direction, one has

$$
\oint_{\gamma} M d x+N d y=\varepsilon \int_{0}^{2 \pi}[-M(\varepsilon \cos \theta, \varepsilon \sin \theta) \sin \theta+N(\varepsilon \cos \theta, \varepsilon \sin \theta) \cos \theta] d \theta
$$

for all sufficiently small ε. What happens when γ does not enclose the origin?
Solution. Let γ_{ε} be the circle entered at the origin with radius ε which is so small to be enclosed by γ. Then the vector field \mathbf{F} is smooth in the region bounded by γ and γ_{1}. Applying Green's theorem in a multi-connected region we have

$$
\oint_{\gamma} M d x+N d y=\oint_{\gamma^{\prime}} M d x+N d y .
$$

Using the standard parametrization, $\theta \mapsto(\varepsilon \cos \theta, \varepsilon \sin \theta)$, we further have

$$
\oint_{\gamma^{\prime}} M d x+N d y=\varepsilon \int_{0}^{2 \pi}[-M(\varepsilon \cos \theta, \varepsilon \sin \theta) \sin \theta+N(\varepsilon \cos \theta, \varepsilon \sin \theta) \cos \theta] d \theta
$$

for all sufficiently small ε.
When the closed curve does not enclose the origin, the vector field is well-defined inside the curve. Applying the Green's theorem to the region bounded by this curve and use the condition $N_{x}-M_{Y}=0$, we see that line integral vanishes.

